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Abstract. For many spin systems with constant isotropic antiferromagnetic next-neighbour Heisenberg
coupling the minimal energies Emin(S) form a rotational band, i.e. depend approximately quadratically
on the total spin quantum number S, a property which is also known as Landé interval rule. However, we
find that for certain coupling topologies, including recently synthesised icosidodecahedral structures this
rule is violated for high total spins. Instead the minimal energies are a linear function of total spin. This
anomaly results in a corresponding jump of the magnetisation curve which otherwise would be a regular
staircase.

PACS. 75.50.Xx Molecular magnets – 75.10.Jm Quantized spin models – 75.40.Cx Static properties (order
parameter, static susceptibility, heat capacities, critical exponents, etc.)

1 Introduction

It appears that for spin systems with constant isotropic
antiferromagnetic next-neighbour Heisenberg exchange
the minimal energy Emin(S) for given total spin quantum
number S is typically a strictly convex function of S. For
many spin topologies like rings, cubes, icosahedra etc. this
function is very close to a parabola [1]. For certain systems
this behaviour has been explained with the help of the un-
derlying sublattice structure [2]. Experimentally this prop-
erty has been described as “following the Landé interval
rule” [3–6]. In the classical limit, where the single-spin
quantum number s goes to infinity, the function Emin(S)
is even an exact parabola if the system possesses co-planar
ground states [7].

However, we find that for certain coupling topologies,
including the cuboctahedron and the icosidodecadron [8],
this rule is violated for high total spins. More precisely,
for the icosidodecadron the last four points of the graph
of Emin versus S, i.e. the points with S = Smax to S =
Smax − 3, lie on a straight line

Emin(S) = 60Js2 − 6Js(30s− S). (1)

An analogous statement holds for the last three points
of the corresponding graph for the cuboctahedron. These
findings are based on numerical calculations of the mini-
mal energies for several s both for the icosidodecahedron
as well as for the cuboctahedron. For both systems, addi-
tionally, we have a rigorous proof of the high spin anomaly
for the case of s = 1/2. This proof rests on an inequality

a e-mail: jschnack@uos.de

which says that all points of the graph of Emin versus S
lie above or on the line connecting the last two points
(“bounding line”). The proof can be easily applied to a
wide class of spin systems, e.g. to two-dimensional spin
arrays.

The observed anomaly – linear instead of parabolic
dependence – results in a corresponding jump of the mag-
netisation curve M versus B. In contrast, for systems
which obey the Landé interval rule the magnetisation
curve at very low temperatures is a staircase with equal
steps up to the highest magnetisation.

The anomaly could indeed be observed in magneti-
sation measurements of the so-called Keplerate struc-
ture {Mo72Fe30} which is a recently synthezised mag-
netic molecule where 30 Fe3+ paramagnetic ions (spins
s = 5/2) occupy the sites of a perfect icosidodecahedron
and interact via isotropic, next-neighbour antiferromag-
netic exchange [9]. Unfortunately, the magnetisation mea-
surements [10,11] performed so far suffer from too high
temperatures which smear out the anomaly.

Nevertheless, it may be possible to observe truly giant
magnetisation jumps in certain two-dimensional spin sys-
tems which possess a suitable coupling topology. In such
systems the magnetisation jump can be of the same order
as the number of spins, i.e. the jump remains finite – or
is macroscopic – in the thermodynamic limit N →∞.

The article is organized as follows. In Section 2 we
introduce basic definitions and explain how the results
have been obtained. In Section 3 the high spin anomaly is
discussed and proven for the case of s = 1/2. We provide
an outlook in Section 4.
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Fig. 1. Three-dimensional and planar projection of an icosido-
decahedron (top) and a cuboctahedron (bottom) [8]. The lines
denote couplings with a single exchange parameter J .

2 Definitions and numerics

The Heisenberg Hamilton operator of the investigated spin
systems is

H∼ =
1
2

∑
(u,v)

Ju,v s∼(u) · s∼(v) + gµBBS∼z (2)

=
J

2

∑
(u,v)∈Γ

s∼(u) · s∼(v) + gµBBS∼z , S∼z =
∑
u

s∼z(u),

where the exchange parameters Ju,v are considered as
the components of a symmetric matrix J, i.e. every bond
is taken into account twice. In particular, we assume
Ju,v ∈ {J, 0} and J > 0 which corresponds to antiferro-
magnetic coupling. In equation (2), g is the spectroscopic
splitting factor and µB the Bohr magneton. The vector
operators s∼(u) are the spin operators (in units of ~) of
the individual N paramagnetic ions with constant spin
quantum number s. Because the matrix J couples only
next-neighbours (see Fig. 1) the second sum in (2) runs
over the set Γ of all next-neighbour pairs (u, v) of spins of
a single molecule at sites u and v. Γ can be regarded as
the set of “edges” of the corresponding undirected graph
describing the coupling scheme of the molecule. The “ver-
tices” of the graph correspond to the spin sites 1, 2, . . . , N .
For each spin site u let Γ (u) denote the set of neighbours
of u. Throughout this article we will assume that the num-
ber of neighbours per site is constant, say |Γ (u)| ≡ j. The
“distance” between two spin sites u and v will be the min-
imal number of edges connecting u and v (similar to the
Manhattan distance).

As mentioned already in the introduction the anomaly
was found numerically. For this purpose the Hamilton ma-
trix had to be diagonalized. The total matrix is a huge
object of dimension (2s + 1)N × (2s + 1)N which must
be block-diagonalized in advance. Using that the Hamil-
ton operator commutes with S∼z, the Ising product states
which are a natural basis can be grouped according to
the quantum numbers M , thereby dividing the Hilbert
space into orthogonal subspaces H(M). A further reduc-
tion of dimension is achieved if the symmetries of the spin
array are exploited. The icosidodecahedron for instance
shows a tenfold shift symmetry leading to Hilbert sub-
spaces H(M,k) with k = 0, . . . , 9. Within these subspaces
a Lanczos procedure was applied in order to obtain the
respective minimal energies.

3 High spin anomaly

3.1 Observations

The resulting minimal energies Emin(S) are shown by
dashes on the l.h.s. of Figure 2 for the isosidodecahedron
and on the l.h.s. of Figure 3 for the cuboctahedron. The
straight lines denote the bounding lines, which connect the
highest four levels in the case of the isosidodecahedron
and the highest three in the case of the cuboctahedron.
At T = 0 this behavior leads to jumps of the magnetisa-
tion M

M = − 1
Z

tr
{
gµBS∼ze

−βH∼
}
, Z = tr

{
e−βH∼

}
· (3)

Due to the effect that the states lie exactly on the bound-
ing line in the graph of Emin versus S they “take over”
for the new total ground state at the same value of the
magnetic field, therefore the magnetisation immediately
jumps to the highest value. The jumps are marked by ar-
rows in the magnetisation curves of the isosidodecahedron
(r.h.s. of Fig. 2) and the cuboctahedron (r.h.s. of Fig. 3).

For systems which follow the Landé interval rule, i.e.
where Emin(S) is a parabolic function of S, the cor-
responding magnetisation curve would consist of equal
steps.

3.2 Idea of the proof

A necessary condition for the anomaly is certainly that
the minimal energy in the one-magnon space is degener-
ate. Therefore, localized one-magnon states can be con-
structed which are also of minimal energy. When placing
a second localized one-magnon eigenstate on the spin ar-
ray there will be a chance that it does not interact with
the first one if a large enough separation can be achieved.
This new two-magnon state is likely the state of minimal
energy in the two-magnon Hilbert space because for an-
tiferromagnetic interaction two-magnon bound states do
not exist (at least for s = 1/2). This procedure can be con-
tinued until no further independent magnon can be placed
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Fig. 2. Icosidodecahedron: L.h.s. – minimal energy levels Emin(S) as a function of total spin S. R.h.s. – magnetisation curve
at T = 0.

Fig. 3. Cuboctahedron: L.h.s. – minimal energy levels Emin(S) as a function of total spin S. R.h.s. – magnetisation curve
at T = 0.

on the spin array. In a sense the system behaves as if it
consists of non-interacting bosons which, up to a limiting
number, can condense into a single-particle ground state.

In more mathematical terms: In order to prove the
high-spin anomaly we first show an inequality which says
that all points (S,Emin(S)) lie above or on the line con-
necting the last two points. This inequality holds for
s = 1/2 and all systems with constant antiferromagnetic
exchange parameter and a constant number of neighbours
for each spin site. For specific systems as those mentioned
above what remains to be done is to construct particu-
lar states which exactly assume the values of Emin corre-
sponding to the points lying on the bounding line, then
these states are automatically states of minimal energy.

Note that the high spin anomaly does not contradict
the strict convexity of the graph of Emin versus S in the
classical limit, since in the limit s→∞ the interval where
the anomaly occurs, e.g. S = Smax − 3 to S = Smax,
becomes an infinitesimally small fraction of the total spin
range.

We set J = 1 throughout this section.

3.3 Bounding line for s = 1/2

Let Ha denote the eigenspace of S∼z with eigenvalue
M = N/2 − a, a = 0, 1, . . . , N . It has the dimen-

sion dim(Ha) =
(
N
a

)
. An orthonormal basis of Ha is

given by the product states denoted by |n1, . . . , na〉 with
1 ≤ n1 < n2 < · · · < na ≤ N where the ni denote the
sites with flipped spin m = −1/2. A state of this form will
be called isolated iff (ni, nj) /∈ Γ for all 1 ≤ i < j ≤ a. In
other words, the flipped sites of an isolated state must not
be neighbours according to the coupling scheme.Hiso

a will
denote the subspace of Ha spanned by isolated states.

We will embed the Hilbert space of the spin system into
some sort of Fock space for magnons. More precisely, let
Ba(H1) be the totally symmetric (i.e. bosonic) subspace
of
⊗

i=1,...,aH1. If A1∼
: H1 −→ H1 is a linear operator,

Ba(A1∼
) will denote the restriction of A1∼

⊗ 1∼ ⊗ · · · ⊗ 1∼ +

· · ·+ 1∼⊗· · ·⊗ 1∼⊗A1∼
onto Ba(H1). An orthonormal basis

of Ba(H1) is given by the bosonic states

S∼ |n1 〉 ⊗ · · · ⊗ |na 〉, (4)

where 1 ≤ n1 < n2 < · · · < na ≤ N and the “sym-
metrisator” S∼ denotes the sum over all a! permutations of

the product state divided by
√
a!. The linear extension of

the map |n1, . . . , na 〉 7→ S∼ |n1 〉 ⊗ · · · ⊗ |na 〉 defines an
isometric embedding

J
∼a

: Ha −→ Ba(H1) . (5)
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Let H∼ a denote the restriction of the Hamilton opera-
tor (2) (with zero magnetic field) onto Ha and

H̃∼ a ≡ J∼
∗
aBa(H∼ 1)J

∼a
. (6)

It is obvious that J
∼
∗
aJ∼a = 1∼Ha and P∼a = J

∼a
J
∼
∗
a will be

a projector onto a subspace of Ba(H∼ 1), whose vectors will
be called physical states. The physical states are super-
positions of a magnon states localized on different sites.
States like |α 〉 ⊗ |α 〉 are unphysical since they would
correspond to a spin at site α that is lowered twice, which
is impossible for s = 1/2.

We will show the following

Proposition 1 H∼ a = 1−a
8 Nj + H̃∼ a if restricted to the

subspace Hiso
a .

j is the number of neighbours, which is assumed to be
constant for each spin site.

Proof. Let |n1, . . . , na 〉 be an arbitrary isolated basis
state and split s∼(u) · s∼(v) into

s∼(u) · s∼(v) = s∼z(u)s∼z(v)+
1
2

(s∼
+(u)s∼

−(v)+s∼
−(u)s∼

+(v)),

(7)

analogously H∼ a = H∼
′
a +H∼

′′
a and H̃∼ a = H̃∼ a

′
+ H̃∼ a

′′
. First,

let us consider

H∼
′′
a |n1, . . . , na 〉 =

1
4

∑
(u,v)∈Γ

(s∼
+(u)s∼

−(v)

+s∼
−(u)s∼

+(v)) |n1, . . . , na 〉 (8)

=
1
4

 ∑
m1∈Γ (n1)

Sort |m1, . . . , na 〉+ · · ·

+
∑

ma∈Γ (na)

Sort |n1, . . . ,ma 〉

 .

Here Sort denotes the procedure which re-arranges a list
of integers into its non-decreasing order. Note that fur-
ther summation constraints of the form m1 6= n2, . . . , na
etc. would be superfluous since |n1, . . . , na 〉 was assumed

to be isolated. Now consider

H̃∼ a
′′ |n1, . . . , na 〉 = J

∼
∗
aBa(H∼

′′
1)S∼ |n1 〉 ⊗ · · · ⊗ |na 〉(9)

=
1
4
J
∼
∗
a

( ∑
m1∈Γ (n1)

S∼ |m1 〉 ⊗ · · · ⊗ |na 〉

+ · · ·+
∑

ma∈Γ (na)

S∼ |n1 〉 ⊗ · · · ⊗ |ma 〉
)

=
1
4

 ∑
m1∈Γ (n1)

Sort |m1, . . . , na 〉+ · · ·

+
∑

ma∈Γ (na)

Sort |n1, . . . ,ma 〉


= H∼

′′
a |n1, . . . , na 〉 . (10)

Now we turn to H∼
′
a. Recall that there is a total number

of L = Nj
2 links between different sites. For a given basis

state |n1, . . . , na 〉 we write

L = L++ + L+− + L−−, (11)

where L++ denotes the number of links between two m =
+1/2-sites, etc. Hence for isolated states L−− = 0. Each
basis state is an eigenstate of H∼

′
a with eigenvalue

1
4

(L++ − L+− + L−−) =
1
4

(L− 2L+−). (12)

For isolated states L+− = ja, but in general L+− = ja−
2L−− since each −− link “deletes” two +− links of a
corresponding isolated state. Hence

H∼
′
a |n1, . . . , na 〉 =

1
4

(
Nj

2
− 2ja+ 4L−−

)
|n1, . . . , na 〉

(13)

=
1
4

(
Nj

2
− 2ja

)
|n1, . . . , na 〉 · (14)

Similarly one can show that H̃∼ a
′
= aH̃∼ 1

′
, hence

H̃∼ a
′ |n1, . . . , na 〉 =

a

4

(
Nj

2
− 2j

)
|n1, . . . , na 〉· (15)

From (15, 14), and (10) the proposition follows
immediately.

If we drop the condition that |n1, . . . , na 〉 is isolated
we ought to slightly modify our calculations. First, we
would have to introduce extra summation constraints of
the form m1 6= n2, . . . , na etc. in (8) in order to be
sure that the resulting states lie in Ha. Although Ba(H∼ 1)
in general will produce some unphysical states with two
magnons localized at the same site, these states will be an-
nihilated by J

∼
∗
a. Consider, for example, two adjacent sites
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α and β and a corresponding product state |α, β 〉 ∈ H2.
We have

J
∼2 |α, β 〉 = 1/

√
2 ( |α 〉 ⊗ |β 〉+ |β 〉 ⊗ |α 〉) ∈ B2(H1).

(16)

Application of B2(H∼ 1) to J
∼2 |α, β 〉 will yield a state with

unphysical components like |α 〉 ⊗ |α 〉 and |β 〉 ⊗ |β 〉,
which are, however, orthogonal to the subspace of physical
states defined above. These components are hence anni-
hilated by P∼a and J

∼
∗
a – note that J

∼
∗
a = (J

∼
∗
aJ∼a)J

∼
∗
a =

J
∼
∗
a(J
∼a
J
∼
∗
a) = J

∼
∗
aP∼a. Thus H̃∼ a

′′
= J
∼
∗
aB2(H∼

′′
1 )J
∼a

= H∼
′′
a

by a straightforward calculation analogous to (9) and (10).
For H∼

′
a and H̃∼ a

′
the situation is different. Since we

cannot skip the L−− term in (13) proposition 1 no
longer holds. However, we may argue that, by (13), H∼

′
a −

1
4

(
Nj
2 − 2ja

)
is an operator with eigenstates |n1, . . . , na 〉

and corresponding eigenvalues L−− ≥ 0. Therefore, the
difference between the left and the right hand side of
proposition 1 is a positive operator and we obtain

Proposition 2 H∼ a ≥
1−a

8 Nj + H̃∼ a .

Now let Ea denote the smallest energy eigenvalue
of H∼ a. Note that Emin(S = N/2 − a) ≥ Ea, since the
energy eigenvalues for given total spin quantum number
S are assumed within each subspace of magnetic quan-
tum number M = −S, . . . , S. We expect that Emin(S =
N/2 − a) = Ea holds generally for the spin systems un-
der consideration, this has been proven only for so-called
bi-partite systems [12,13], but numerically shown to hold
for much more systems [14].

Analogously we define Ẽa for H̃∼ a. Since for bosons
the ground state energy is additive, aE1 will be the
smallest energy eigenvalue of B(H∼ 1). We further conclude

Ẽa ≥ aE1 since Ẽa = 〈Φ|H̃∼ a|Φ〉 = 〈J
∼a
Φ|B(H∼ 1)|J

∼a
Φ〉

if H̃∼ a |Φ 〉 = Ẽa |Φ 〉. Together with proposition 1 this
implies

Proposition 3 Ea ≥ 1−a
8 Nj + aE1 .

This inequality says that the minimal energies Ea,
resp. Emin(S = N/2 − a), lie above or on the “bounding
line” `(a) = 1−a

8 Nj + aE1.

3.4 Ground states of independent magnons

According to what has been said above in order to rigor-
ously prove the high spin anomaly it suffices to construct
states which assume the energy values of the bounding line
`(a) for certain values of a > 1. By the results of the previ-
ous subsection it is clear that these energy values must be
minimal and the states must be eigenstates of Ha in the
case s = 1/2. Actually we conjecture that these states are
also minimal energy states of Ha for arbitrary spin, which
conjecture is numerically supported for all cases where we

have calculated Ea, but we cannot prove it at the mo-
ment. Nevertheless, we will assume an arbitrary spin s in
this subsection.

We first consider the case of the icosidodecahedron.
Let a = 1. Recall that a general state in Ha is of the
form

∑N
n=1 cn |n 〉, where n denotes the spin site where the

magnetic quantum number is decreased by 1. The eigen-
values of H1 are of the form

Eα =
1
2
Njs2 + (jα − j)s, (17)

where jα, α = 1, . . . , N are the eigenvalues of the coupling
matrix J. In our case, N = 30, j = 4, and the minimal
eigenvalue jα is −2, hence

E1 = 60s2 − 6s. (18)

The corresponding eigenspace of Ha is ten-fold degener-
ate. It is possible to find linear superpositions which are
states of minimal energy and have some intuitive geomet-
ric interpretation as localized one-magnon states corre-
sponding to even subrings of the icosidodecahedron. These
states have alternating amplitudes cn = ±1 for sites n of
the subring and vanishing amplitudes for the remaining
sites. The smallest even subrings generating such states
are the “8-loops” circumscribing two adjacent pentagons,
e.g. (1, 2, 3, 4, 9, 17, 18, 10) according to the numbering of
sites in Figure 1. Other even subrings are the “equators”
with 10 sites or the “curly equators” with 12 sites which
need not be further considered here.

Now let a = 2. If a two-magnon ground state lies on
the bounding line `(a), as it is suggested by numerical
diagonalization, we would have

E2 = 60s2 − 12s. (19)

In fact, this energy is assumed by the follow-
ing state: Consider two 8-loops L1, L2 with a dis-
tance of 2, e.g. L1 = (1, 2, 3, 4, 9, 17, 18, 10) and
L2 = (12, 13, 22, 28, 29, 30, 26, 21) according to Figure 1.
εn1 , n1 ∈ L1 and δn2 , n2 ∈ L2 denote the amplitudes which
define the one-magnon ground-states described above.
Then a two-magnon ground-state with the energy of (19)
can be defined by

Φ2 =
∑

n1∈L1,n2∈L2

εn1δn2 |n1, n2 〉 · (20)

Since this state lies entirely in Hiso
2 it can be considered

as a ground-state of two non-interacting magnons.
Unfortunately, an analogous construction of three mu-

tually isolated one-magnon states is no longer possible for
a = 3. Here we have to determine an appropriate state
by numerical diagonalization. One possible state of three
independent magnons is a state which is completely sym-
metric under the action of the symmetry group of the
icosidodecahedron, i.e. the icosahedral group with reflec-
tions Yh of order 120. Hence it will suffice to define this
state by assigning an amplitude to only one triple of sites
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Table 1. Definition of an Yh-symmetric three-magnon ground-
state by assignment of amplitudes to representative triple
states.

|n1, n2, n3 〉 Length of orbit Amplitude

| 1, 3, 14 〉 60 1

| 1, 3, 15 〉 120 −1
| 1, 3, 22 〉 120 −1
| 1, 3, 23 〉 120 1

| 1, 3, 28 〉 120 1
| 1, 3, 29 〉 60 −2
| 1, 7, 15 〉 120 1
| 1, 7, 18 〉 60 1

| 1, 7, 23 〉 120 −1
| 1, 7, 24 〉 120 −1
| 1, 7, 29 〉 60 2
| 1, 8, 21 〉 120 −1

| 1, 8, 25 〉 30 2
| 1, 8, 26 〉 120 −1
| 1, 8, 27 〉 120 2

| 1, 8, 28 〉 30 −2
| 1, 13, 16 〉 20 −2
| 1, 13, 24 〉 60 −1
| 1, 13, 30 〉 60 2

| 1, 14, 30 〉 20 −1

within each orbit of the symmetry group. The other triples
obtained by applying symmetry operations g ∈ Yh to each
site will have, by definition, the same amplitude. The com-
plete definition of this state (without normalization) can
be found in Table 1. The calculation of the correspond-
ing energy E2 = 60s2 − 18s can be done by a computer
algebra software. Also this state lies entirely within Hiso

3 .
Thus we have obtained a rigorous proof of the anomaly
also for the case a = 3 and s = 1/2.

The case of the cuboctahedron is largely analogous,
up to the fact that here we have only one point of
anomaly for a = 2. The corresponding two-magnon
ground state can be constructed by using two sepa-
rated 4-loops, e.g. (1, 2, 3, 4) and (9, 10, 11, 12) in Fig-
ure 1 (r.h.s.).

3.5 Generalization to the XXZ-model

The above proof holds also for the more general Hamilto-
nian of the XXZ-model

H∼ =
J

2

∑
(u,v)∈Γ

{
∆s∼z(u)s∼z(v) + s∼x(u)s∼x(v)

+s∼y(u)s∼y(v)
}
, (21)

with ∆ ≥ 0. Since the total spin S is no longer a good
quantum number, the minimal energies Emin have to be
considered as a function of the total magnetic quantum
number M instead. For the existence of the bounding line
and the corresponding magnetisation jump this aspect is
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Fig. 4. Fictitious two-dimensional spin array with periodic
boundary conditions. This array hosts at least as many inde-
pendent magnons as unit cells, i.e. 4 ≡ N/6.

irrelevant. The only change in the proof is a multiplica-
tion of H∼

′
a and H̃∼ a

′
by ∆, which does not change the argu-

mentation. Also the construction of eigenstates, as carried
out in subsection 3.4, is not altered by the anisotropy ∆
in (21), since these states are isolated.

4 Outlook

The shown proof offers a method to create spin arrays
which by construction support a finite number of inde-
pendent magnons. The basic idea is to design a unit cell
which can host a localized one-magnon state, that is an
eigenstate of the Hamiltonian. Triangles play a key role in
the construction of such cells because they help to prevent
localized magnons from escaping. The total spin array is
then obtained by properly linking serveral unit cells. Fig-
ure 4 shows an example. The unit cell is one quarter of
the structure. It can host a single magnon

| 1 magnon 〉 =
1
2

( | 1 〉 − | 2 〉+ | 3 〉 − | 4 〉) , (22)

which is an eigenstate of the Hamiltonian with minimal
energy in the one-magnon space. One easily notices that
in total four localized independent magnons fit into the
structure. In general it might be possible that more in-
dependent magnons, like in the case of the icosidodeca-
hedron, can occupy the spin array. For the example of
Figure 4 this is not the case.

The latter example offers the perspective of observing
truly giant magnetisation jumps in two-dimensional spin
systems. The number of independent magnons which can
be placed on the lattice is proportional to the number
of spins itself – N/6 is the example of Figure 4 – and
thus a macroscopic quantity. This will be the subject of a
forthcoming publication.
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